Factoring Modular Polynomials
نویسندگان
چکیده
This paper gives an algorithm to factor a polynomial f (in one variable) over rings like Z=rZ for r 2 Z or F q y]=rF q y] for r 2 F q y]. The Chinese Remainder Theorem reduces our problem to the case where r is a prime power. Then factorization is not unique, but if r does not divide the discriminant of f , our (probabilistic) algorithm produces a description of all (possibly exponentially many) factorizations into irreducible factors in polynomial time. If r divides the discriminant, we only know how to factor by exhaustive search, in exponential time.
منابع مشابه
Improved Techniques for Factoring Univariate Polynomials
The paper describes improved techniques for factoring univariate polynomials over the integers. The authors modify the usual linear method for lifting modular polynomial factorizations so that efficient early factor detection can be performed. The new lifting method is universally faster than the classical quadratic method, and is faster than a linear method due to Wang, provided we lift suffic...
متن کاملFast polynomial factorization, modular composition, and multipoint evaluation of multivariate polynomials in small characteristic
We obtain randomized algorithms for factoring degree n univariate polynomials over Fq that use O(n + n log q) field operations, when the characteristic is at most n. When log q < n, this is asymptotically faster than the best previous algorithms (von zur Gathen & Shoup (1992) and Kaltofen & Shoup (1998)); for log q ≥ n, it matches the asymptotic running time of the best known algorithms. The im...
متن کاملRecovering Fourier coefficients of modular forms and factoring of integers
X iv :1 00 8. 50 35 v1 [ m at h. N T ] 3 0 A ug 2 01 0 RECOVERING FOURIER COEFFICIENTS OF MODULAR FORMS AND FACTORING OF INTEGERS Sergei N. Preobrazhenskĭi It is shown that if a function defined on the segment [−1, 1] has sufficiently good approximation by partial sums of the Legendre polynomial expansion, then, given the function’s Fourier coefficients cn for some subset of n ∈ [n1, n2], one c...
متن کاملOn Nonlinear Polynomial Selection and Geometric Progression (mod N) for Number Field Sieve
The general number field sieve (GNFS) is asymptotically the fastest known factoring algorithm. One of the most important steps of GNFS is to select a good polynomial pair. A standard way of polynomial selection (being used in factoring RSA challenge numbers) is to select a nonlinear polynomial for algebraic sieving and a linear polynomial for rational sieving. There is another method called a n...
متن کاملFactoring Polynomials and the Knapsack Problem
Although a polynomial time algorithm exists, the most commonly used algorithm for factoring a univariate polynomial f with integer coeecients is the Berlekamp-Zassenhaus algorithm which has a complexity that depends exponentially on n where n is the number of modular factors of f. This exponential time complexity is due to a combinatorial problem; the problem of choosing the right subset of the...
متن کاملFast polynomial factorization and modular composition
We obtain randomized algorithms for factoring degree n univariate polynomials over Fq requiring O(n1.5+o(1) log q + n1+o(1) logq) bit operations. When log q < n, this is asymptotically faster than the best previous algorithms [J. von zur Gathen and V. Shoup, Comput. Complexity, 2 (1992), pp. 187–224; E. Kaltofen and V. Shoup, Math. Comp., 67 (1998), pp. 1179– 1197]; for log q ≥ n, it matches th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Symb. Comput.
دوره 26 شماره
صفحات -
تاریخ انتشار 1998